Новая разработка ОАО «Aвиадвигатель» для электроэнергетики

В 2006 году руководством Пермского моторостроительного комплекса и ОАО «Территориальная генерирующая компания № 9» (Пермский филиал) подписан договор на изготовление и поставку газотурбинной электростанции ГТЭС-16ПА на базе ГТЭ-16ПА с двигателем ПС-90ЭУ-16А.

Об основных отличиях нового двигателя от существующего ПС-90АГП-2 мы попросили рассказать заместителя генерального конструктора-главного конструктора энергетических газотурбинных установок и электростанций ОАО «Авиадвигатель» Даниила СУЛИМОВА.

Основным отличием установки ГТЭ-16ПА от существующей ГТУ-16ПЭР является применение силовой турбины с частотой вращения 3000 об./мин (вместо 5300 об./мин). Уменьшение частоты вращения дает возможность отказаться от дорогостоящего редуктора и повысить надежность газотурбинной установки  в целом.

Технические характеристики двигателей ГТУ-16ПЭР и ГТЭ-16ПА (в условиях ISO)

 Параметры ГТУ-16ПЭР ГТЭ-16ПА
 Номинальная мощность на клеммах генератора, МВт 16,4 16,3
 КПД на клеммах генератора, % 34,8 35,5
 Температура на выхлопе двигателя, ОС 495 481
 Номинальная частота вращения выходного вала, об./мин 5300 3000
 Ресурс (в базовом классе использования), час:  
  •  до капитального ремонта
  •  общетехнический
 25 000
100 000
  25 000
100 000

Оптимизация основных параметров силовой турбины

Базовые параметры свободной турбины (СТ): диаметр, проточная часть, количество ступеней, аэродинамическая эффективность - оптимизированы с целью минимизации прямых эксплуатационных расходов.

Эксплуатационные расходы включают затраты на приобретение СТ и расходы за определенный (приемлемый для заказчика в качестве срока окупаемости) период эксплуатации. Выбор вполне обозримого для заказчика (не более 3 лет) срока окупаемости позволил реализовать экономически обоснованную конструкцию.

Выбор оптимального варианта свободной турбины для конкретного применения в составе ГТЭ-16ПА производился в системе двигателя в целом на основе сравнения прямых эксплуатационных расходов для каждого варианта.

С использованием одномерного моделирования СТ по среднему диаметру определялся достижимый уровень аэродинамической эффективности СТ для дискретно заданного количества ступеней. Выбиралась оптимальная для данного варианта проточная часть. Количество лопаток, учитывая их значительное влияние на себестоимость, выбиралось из условия обеспечения коэффициента аэродинамической нагрузки Цвайфеля равным единице.

На основе выбранной проточной части оценивалась масса СТ и производственная себестоимость. Затем проводилось сравнение вариантов турбины в системе двигателя по прямым эксплуатационным расходам.

При выборе количества ступеней для СТ учитывается изменение кпд, затрат на приобретение и эксплуатацию (стоимость топлива).

Стоимость приобретения равномерно возрастает с ростом себестоимости при увеличении количества ступеней. Подобным же образом растет и реализуемый кпд - как следствие снижения аэродинамической нагрузки на ступень. Затраты на эксплуатацию (топливная составляющая) падают с ростом кпд. Однако суммарные затраты имеют четкий минимум при четырех ступенях в силовой турбине.

При расчетах учитывался как опыт собственных разработок, так и опыт других фирм (реализованный в конкретных конструкциях), который позволил обеспечить объективность оценок.

В окончательной конструкции за счет увеличения нагрузки на ступень и снижение кпд СТ от максимально достижимой величины примерно на 1% удалось снизить суммарные затраты заказчика почти на 20%. Это было достигнуто за счет снижения себестоимости и цены турбины на 26% относительно варианта с максимальным кпд.

Аэродинамическое проектирование СТ

Высокая аэродинамическая эффективность новой СТ при достаточно высокой нагрузке достигнута за счет использования опыта ОАО «Авиадвигатель» в разработке турбин низкого давления и силовых турбин, а также применения многоступенчатых пространственных аэродинамических моделей, использующих уравнения Эйлера (без учета вязкости) и Навье-Стокса (учитывающих вязкость).

Сравнение параметров силовых турбин ГТЭ-16ПА и ТНД Rolls-Royce

Сравнение параметров СТ ГТЭ-16ПА и наиболее современных ТНД Rolls-Royce семейства Trent (диаграмма Смита) показывает, что по уровню угла поворота потока в лопатках (примерно 1050) новая СТ находится на уровне турбин Rolls-Royce. Отсутствие жесткого ограничения по массе, свойственного авиационным конструкциям, позволило несколько снизить коэффициент нагрузки dH/U2 за счет увеличения диаметра и окружной скорости. Величина выходной скорости (свойственная наземным конструкциям) позволила уменьшить относительную осевую скорость. В целом, потенциал спроектированной СТ для реализации кпд находится на уровне, характерном для ступеней семейства Trent.

Особенностью аэродинамики спроектированной СТ является также обеспечение оптимального значения кпд турбины на режимах частичной мощности, характерных для эксплуатации в базовом режиме.

При сохранении частоты вращения изменение (снижение) нагрузки на СТ приводит к возрастанию углов атаки (отклонению направления течения газа на входе в лопатки от расчетной величины) на входе в лопаточные венцы. Появляются отрицательные углы атаки, наиболее значительные в последних ступенях турбины.

Проектирование лопаточных венцов СТ с высокой устойчивостью к изменению углов атаки обеспечено специальным профилированием венцов с дополнительной проверкой стабильности аэродинамических потерь (по 2D/3D аэродинамическим моделям Навье-Стокса) при больших углах потока на входе.

                                                                                                                                                                                                                                                                                                    Аналитические характеристики новой СТ показали в результате значительную устойчивость к отрицательным углам атаки, а также и возможность применения СТ и для привода генераторов, вырабатывающих ток с частотой 60 Гц (с частотой вращения 3600 об./мин),  то есть возможность увеличения частоты вращения на 20% без заметных потерь кпд. Однако в этом случае практически неизбежны потери кпд на режимах пониженной мощности (приводящих к дополни-тельному увеличению отрицательных углов атаки).
Особенности конструкции СТ
Для снижения материалоемкости и веса СТ использовались проверенные авиационные подходы к конструированию турбины. В результате масса ротора, несмотря на увеличение диаметра и количества ступеней, оказа-лась равной массе ротора силовой турбины ГТУ-16ПЭР. Это обеспечило значительную унификацию трансмиссий, унифицированы также масляная система, система наддува опор и охлаждения СТ.
Увеличено количество и улучшено качество воздуха, применяемого для наддува опор трансмиссионных подшипников, включая его очистку и охлаждение. Улучшено также качество смазки трансмиссионных подшипников путем применения фильтроэлементов с тонкостью фильтрации до 6 мкм.
С целью повышения эксплуатационной привлекательности новой ГТЭ внедрена специально разработанная система управления, которая позволяет заказчику воспользоваться турбодетандерным (воздушным и газовым) и гидравлическим типами запуска.
Массогабаритные характеристики двигателя позволяют использовать для его размещения серийные конструкции блочно-комплектной электростанции ГТЭС-16П.
Шумо- и теплоизолирующий кожух (при размещении в капитальных помещениях) обеспечивает акустические характеристики ГТЭС на уровне, предусмотренном санитарными нормами.
В настоящее время первый двигатель проходит серию специальных испытаний. Газогенератор двигателя уже прошел первый этап эквивалентно-циклических испытаний и начал второй этап после ревизии технического состояния, который завершится весной 2007 года.

Силовая турбина в составе полноразмерного двигателя прошла первое специальное испытание, в ходе которого были сняты показатели по 7 дроссельным характеристикам и другие экспериментальные данные.
По результатам испытаний сделан вывод о работоспособности СТ и ее соответствии заявленным параметрам.
Кроме этого по результатам испытаний в конструкцию СТ внесены некоторые корректировки, в том числе изменена система охлаждения корпусов для снижения тепловыделения в помещение станции и обеспечения пожарной безопасности, а также для оптимизации радиальных зазоров повышения кпд, настройка осевой силы.
Очередное испытание силовой турбины планируется провести летом 2007 года.

Газотурбинная установка ГТЭ-16ПА
накануне специальных испытаний